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The process of wiping a thickened chemical contaminant from

a surface, where it has been inadvertantly transferred and may

pose a safety hazard, is investigated with regard to the

fundamental fluid mechanics. Of special interest is the effect

viscoelastic fluid behavior has on the process and specifically

the amount of fluid remaining after wiping . Rigid aluminum

blades of variable geometry, accurately positioned above a smooth

rotating cylindrical surface, provide an experimental model of

the process. Residual fluid thickness data as a function of

blade height for newtonian liquids are compared to a simple

lubrication theory model, while a more thorough Finite Element

solution to the problem is planned for the future. Preliminary

results indicate the potential to separate shear thinning and

elastic effects experimentally through the proper choice of test

fluids.
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INTR DtJCTTON

The process of wiping a contaminating fluid from a surface

poses an interesting fluid dynamics problem and is of practical

interest as well. Although a wiping step alone is rarely

sufficient to render a surface "clean", optimizing the wiping

process (minimizing the amount of contaminant remaining) can

considerably reduce the requirements of additional, more costly,

cleaning processes.
A simple geometry for investigating the wiping process is

shown in Figure 1. Hsu (1984) considers a similar geometry to

study the the forces generated in a blade coating process. His

analysis is the basis for a simple analytical model presented

here, with two modifications. First, his primary interest is in

the pressure field generated under the blade, while we are

concerned with the amount of liquid left behind after the wiping

process. Secondly, he considers only a specific case of our more

generalized geometry, leaving open the question of how sensitive

the results are to blade orientation and placement. Following

Hsu, a perturbation method is used to obtain an analytical

solution for newtonian liquids, and justification is given for

retaining only the zeroth order solution (equivalent to

lubrication theory - Cameron, 1966). A specially designed wiping

apparatus is used to collect residual fluid thickness data, for :Q
comparison. Data for newtonian liquids show good agreement

with the model under some conditions, and provide insight into

A,



the limitations of the model under others.

The model is extended to purely viscous non-newtonian

"liquids, by incorporating a shear dependent viscosity function

into the equations. Experiments with viscoelastic liquids

"demonstrate that the residual fluid thickness can differ markedly

from values predicted by lubrication theory for purely viscous

fluids.

4..i3
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ANALYTICAL SOIAUTTOM

Newtonian Liquidsi

Figure 2 gives a definition sketch for the geometry and

coordinates. We start with the steady state Navier-Stokes

equations (neglecting gravity) in two dimensions, written in

cartesian coordinates as

(2)

The continuity equation is
•'V

4 ý , . ( 3 )

"I'

We nondimensionalize the variables with a set of scaling

factors as follows:

U.

"4 L

For the time, we leave U h and L undefined with respect to

4



the specific system (the wiper) of interest, but specify that

Lx"°-. ' -- ----

SWe define a Reynolds number (Re) as

"and a geometrical parameter o( as

Then Eqs. 1-3 become

(4)

It is useful to rewrite Eq. 6 as

*) (7)

* Boundary conditions for the wiper take the forms of the following

5
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equations (see Fig. 2)

q;' 0 (10)

TTOWN T (10)TT 0-),,T ,(O

Utilizing the boundary conditions on we may replace Eq. 7

with an equivalent continuity expression of the form

(12)

It is not difficult to see that the constant defined above is

a dimensionless residual fluid thickness. The proportionality

depends upon the choice of the length scale k used in defining

Also of interest is the separating force (per unit width

transverse to the flow), defined nondimensionally as

The U Lf; (13)

The goal, then, is to solve Eqs4, 5, 12, and 13 for \ and ( as

functions of c( , Re , and the shape factors that enter into the

6

4 I%



description of the nip region through the specific forms of

and

So far, the lubrication approximations have not been

imposed. Equations 8 and 9 express the no-slip assumption on the

kinematics. Boundary conditions on pressure have been the

subject of numerous discussions which will not be repeated here.

We select the simplest choice (the Swift-Steiber conditions

- Dowson and Taylor, 1979), in Eq. 10 and 11, and we note that

the positions 1 and 1. correspond to the ends of the blade (Xl

and X2). By its absence from the boundary conditions we see that

surface tension effects are assumed to be absent.

An analytical solution to Eqs. 4-6 may be found by a

perturbation method. The perturbation parameters are

(accounting for curvature effects) and Re (for inertial effects).

Each of the variables is expanded as follows:

7T IT ITi +l4-. (14)

Variables with superscript (00) give the zeroth-order lubrication

approximation. Those with (10) and (01) give the first order

II[ -corrections foL curvature and inertia, respectively.

=p, 2eroth-Order (Lubri~canton) SQuto

7
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When Eqs. 14 are substituted into Eqs. 4, 5, and 12, and

terms in cK, and Re are dropped, we recover the lubrication

equations in the form

(15)

o- (16)

S- ~(17)

Boundary conditions 8-11 hold, but do not include any

constraint on 4 , which does not appear in this level of

approximation.

The solutions may be written as follows:

.4 I

where

so ) T. .

(19)

8
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*0,. (20)

--- A (21)

-.-.- : (•; A~g(22)

The results are general (to this level of approximation) and

can be made particular upon a choice of geometry, ýM and T(WO),

and kinematic boundary condition

Results presented by Hsu indicate that the higher order

corrections may not be necessary for our purposes. First order

corrections for curvature contributed less that 0.5% to the

residual fluid thickness (>), in the specific case he examined,

and the zeroth-order solution was within 1% of a numerically

generated solution of the Navier-Stokes equations (Eqs. 1 and 2).

First order effects would, however, be important if our primary

concernwas for information on blade loading (1). Hsu's analysis

demonstrated that first order corrections contributed as much as

10% to the dimensionless blade loading. Without attempting to
S

derive the higher order solutions, we examine the results

obtained from the zeroth-order approximation, without relying too

heavily on the quantitative predictions of blade loading.

The particular choice of geometry and kinematic boundary

9



condition, as shown in Figure 2, are

R~oll Surface 17'(x. .-) (23a)
-Z.

H is the smallest separation (in the y-direction)

i-e ff(in24a),X)( ) T X

X-Velocity kA U (25a)

Y-Velocity V 0 . Li (26a)

In dmenionessform,

.~ ~ ) -~(23b)

10



\A -~(24b)

- ( L') ~(26b)

An obvious choice for the length scales LV and h , is

LAR

SL H

where H is the blade height at x-0. However, previous results

are presented with L. - (R h' and for the purpose of comparison

is used here as well. The definition of h requires a closer

look. In addition to h , three parameters are required to

specify the geometryl the blade length, L, blade angle, W , and

the blade displacement, X2. Hsu considered the case of - 0 andK.•: X2 - 0, for which

and

_ H -He

where the obvious choice for is H. In this case, H,

corresponds to the blade height at the downstream edge of the

blade (X2) and the minimum separation between the roll and blade.

•'-, •,. , ..- ,,. . ,•..'..-.- . . .. .. ,....,,-. *` " b L • L .-" .` -• . ` "'-• 5 -J "•'.r'kP ... P• . P • .r •s



,•When X2 - 0 an appropriate choice of reference length , ,is

not obvious. Three possibilities are:

1) Separation between the blade and roll at the

downstream edge of the blade.

(X2) C (X2)

2) Separation at X -0.

h H

3) Minimum separation between blade and roll

h - H

For this study, the preferable reference length, h , is the

blade height at X - 0, for X2 > 0, and at the downstream edge of

"the blade for X2 < 0. The downstream edge is chosen when X2 < 0

to avoid negative values of h . Otherwise, the choice of h - H,
for X2 > 0 , simplifies Eq. 24a nicely. The final expressions

defining the geometry and kinematic boundary conditions are:

For X2 >0 0

M
r (24c)

(25c)

12
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- (26c)

where

-x (R Hiý'

For X2 < 0

Equations (2,3b) , (24b) ,(25b) ,and (26b) with

*K (R ya

h H- X2 Tan(~ +

13



Figures 3 and 4 contain justification for considering the

zeroth order perturbation solution without higher order

contributions for curvature. Hsu's results for X as a function

of H0/R indicate that first order corrections are small relative

to the sensitivity of \, to variations in blade angle and

displacement. In the geometry chosen by Hsu, for example, a two

degree error in blade angle or 2 mm displacement of the 19 mm

blade, results in up to 10% change in X compared to less than

0.5% for first order curvature effects. This is not to say that

first order effects are always insignificant. When blade loading

is of primary interest, as it is for Hsu, they are important and

should be included. This is shown in Figures 5 and 6 where

variations in blade loading associated with curvature effects are

comparable to variations due to changes in blade angle and

displacement.

The results are very sensitive to blade angle as shown in

Figures 3 and 5. It is unlikely, in practice, that the blade

angle can be set to within one degree. It is interesting to note

that in the limit of zero blade height, the limiting value of >,

is 2/3, for a zero degree angle and becomes one for positive

blade angles, regardless of how small. Increasing the blade

angle increases the residual fluid thickness and decreases the

blade loading for a given blade.

14



Figures 4 and 6 show the effect of blade displacement. The

use of blade displacement as a parameter is somewhat artificial

because by re-defining the reference frame, displacements can be

accounted for by appropriate changes in blade angle. By defining

the y-axis as the radius that passes through the downstream edge

of the blade, the displacement can be eliminated as a parameter.

The reason displacement is considered in this analysis is for the

the benefit of providing a sensitivity analysis for an

experimental system with a fixed coordinate system, like that

used by Hsu and described later in this report. Notice the

asymmetry apparent in Figure 6. Displacing the blade upstream

(negative x-direction) causes a significant decrease in blade
loading, while positive displacements cause less of an effect in

the opposite direction. The blade loading has a maximum at

X2-L/2 for a zero degree angle, corresponding to the geometry for

which the point of tangency of the blade is located at the center

of the blade. Positive displacements cause the blade loading to

increase until X2-L/2, after which further positive displacement

will decrease the blade loading.

Figures 7 and 8 show the effect of blade length on \ and

, The range of blade length over which the lubrication theory

results are meaningful is limited by two major assumptions.

Lubrication theory requires that entrance and exit effects are

. negligible, L/H>>l, and that the blade and roll be nearly

parallel to minimize curvature effects, L/R<<l. When the blade

is large, relative to the roll radius, it extends so far that the

* curvature of the roll is significant and the parallel flow

assumption is violated. At the other extreme, solutions for

15
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small blades are only valid for very small blade heights, because

as the blade height increases, the entrance length also increases

and entrance effects become significant.

Non-Newtonian Liquids:

Many of the liquids of interest are polymeric solutions or

melts which exhibit non-newtonian behavior. We anticipate that

the response of such solutions to the wiping process is

complicated by non-linear elastic and viscous effects, which can

be extremely difficult to model. As a first step in

understanding these phenomena, we turn to an analysis of the role

of non-linear viscous effects by incorporating a simple shear

dependent viscosity function into the analysis.

We begin with the steady two-dimensional dynamic equations
in the form

V"".", " (26)+I
v _ (27)

16
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along with the continuity equation

4(. (28)

A useful model for shear viscosity is the power law, a

purely viscous (i.e. non-elastic) constitutive equation that we

write as

(29)

where the rato of deformation tensor has two-dimensional

cartesian components

(30)

The viscosity function is written as

1AI (31)

where

4Xe kv2 42 44 (Z L) (32)

As in the newtonian case, the variables are

nondimensionalized and the dynamic equations display terms to

zero and first order in %< and Re. The variables are then

written as in Eq. 14, and the solutions to various ordersin

17
IL.
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and Re may be obtained.

The nondimensionalization is identical to that used in the

newtonian case, except that the newtonian viscosity conoitant

of those equations is everywhere replaced by a factor

', N (33)

We refer to M as the apparent viscosity at the (nominal) shear

rate U/H0 .

In dimensionless form, Eq. 31 becomes

~v -

and itself is included in the perturbation expansion in the

form

*1 ~(35)I

As in the newtonian case, we concern ourselves only with the

zeroth order solution, but for different reasons. Although the

power law constitutive equation is a useful mathematical model

"for investigating the effect of a shear dependent viscosity, it

*.. is not expected to model quantitatively the behavior of iny

"real" fluid involved in the wiping process. An immense amount

of algebra is required to generate the first order contributions,

and it is more reasonable to extract information from the zeroth

order solution and compare that to the behavior of some real
U fluids.

The Zeroth Order Solution:

-2 18



"The equations are (Cf: Eqs. 15-17)

A- ~ PO j (36)

ZT9 (37)

.5 C~~ X (38)

where

(39)

Boundary conditions 8-11 hold.

Unfortunately, no analytical solution of these equations may

be found. Instead, we adopt a procedure due to Horowitz and

Steidler (1960) and produce numerical solutions for the variables

of interest.

One advantage of the Horowitz/Staidler procedure is that it

can be generalized to any purely viscous constitutive equation.

We rewrite Eq. 36 as
4.''

-. (40)

19
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"where

S(41)

but ,-A*is left unspecified at this stage. We def ine a

function a s

(42)

I, ,(in the following, we drop all superscriptsthat denote the

F, zeroth-order solution.)

Integration of Eq. 40 yields

:',',... "c - 7 • •(•(43)

where
j',C

U Integration of Eq. 42 using Eq. 9 gives

cP~jf~c~A~ 4(44)

-,' Using Eq. 43, we write this as

'C (45)

With the boundary condition 0 = 0 at • we may write this

20
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as

S(46)

where we define

r-C) ..\ (47)

0

With these results we may write \ in the form

•" 'To, Tor

C, ,•To- T

where

J&) (49)

From Eq. 43 we write

, -(50)

If we regard -? , , , and "T as the unknowns, we may

use Eqs. 46, 48, and 50 in an iterative approach as follows:

21
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I) A constitutive equation is selected, so that f(-•is

given as an explicit function. Hence the integrals

F and G may be obtained.

2) A trial value for \ is assumed.

3) Regarding , , and * as the unknowns at each

position • , we assume a ý value, calculate T(T),

t~r and 4'b and solve for, tCs- , and -T at each

on the range <

4) From iT and the boundary condition IT= 0 at -

we integrate to obtain the function TT(g). If WT( ,.

does not satisfy the boundary condition TT. 0 at

S-• , we change \ and carry out another cal-

culation of 7t(O, until satisfactory convergence

is attained.

This method is checked by carrying out the procedure for a

newtonian fluid, for which an analytical solution for •TTJ) and

, isavailable (throughthe zeroth-order newtonian analysis

presented earlier). Satisfactory results are obtained, as shown

in Figures 9a and 9b.

22



RESULTS

For a power law fluid, for which

" - •c(51)

1. I

- -C

(53)

one obtains the results shown in Figures 10-17 (See Table 2 for

Key to Figures 10-17). is calculated as before (i.e.using

Eq. 13), but for a power law fluid

(54)

"with M, the apparent viscosity, calculated from Eq. 33. We note

that U/H . is an arbitrary but useful definition of a

characteristic shear rate in this geometry.
Figures 10-12 and 14-16 show that the residual fluid

*, thickness increases as the liquid becomes increasingly shear

thinning (i.e. as n decreases) and is relatively unaffected by

23



small changes in blade angle or displacement. The increase is

small and shows a slight dependence on H/R.

Figures 13 and 17 show the effect of shear thinning on blade

loading with blade angle and displacement as parameters,

respectively. Blade height is predicted to have a significant

effect, but small changes in angle and displacement do not.

2.
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EXPERIMENTAL

Apparatus:

Figure 18 shows a sketch of the wiping apparatus. A

cylindrical steel roll is half immersed in the test fluid and

driven at constant speed, U. Liquid is entrained by the moving

roll and is partially wiped by the blade, while the remainder

emerges downstream as residual fluid of thickness, h. The blade

is held in a rig which permits accurate positioning of the blade

relative to the roll.

The roll has a radius of 2.75 inches, accurately machined to

within 0.5 mil, and an axial length of 5 inches. Blades made

from aluminum are interchangeable and have the geometry defined

in Figure 19. Table 2 summarizes the specific geometries

discussed in this report.

Residual fluid thickness is measured by a direct contact

method (Greener, 1978) using a micrometer driven needle

positioned 60 degrees downstream of the blade. The contact of

the needle with the surface is observed through a microscope.

Procedure:

It is unfortunate that in the limit of very small blade

height (H,-.*0), when the lubrication approximations are most

likely to be valid, good experimental data are very difficult to

obtain. Because of unavoidable experimental uncertainty and the

25



finite precision with which the roll is machined, there is always

some error associated with measuring both the blade height, H,

"and residual fluid thickness, h. The small but finite

uncertainties amount to large relative errors in residual fluid

thickness as H.-w 0. If the blade height and the corresponding

residual fluid thickness are accurately known at one setting,

however, precise incremental changes can be made. A procedure v

for gathering and presenting data is adopted, which minimizes the

experimental uncertainty by taking advantage of the precision

involved in measuring increments in H. and h.

N Blade height is arbitrarily set to a large value (greater

than 50 mil) and the corresponding residual fluid thickness is

.V measured. The blade height is then incrementally decreased, with

the associated micrometer reading for residual fluid thickness

recorded for each increment, until the blade touches the roll

(corresponding to H.- 0). The roll is then stopped and the

"needle is lowered until it too touches the roll, and the

micrometer reading is recorded (corresponding to h - 0). Tha data

generate a curve of b as a function of H,. This curve as a whole

can then be shifted, within bounds set by the experimental

uncertainty (a maximum of 1 mil in any direction), so that it

passes smoothly through the origin. In this way, the errors

.- involved in individual data points are averaged out over the

' entire curve.

,26
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The range over which certain experimental variables are

considered is determined by experimental limitations. In order

to flood the inlet (upstream) region of the blade, a sufficient

quantity of fluid must be entrained from the reservoir as shown

in Figure 2a. The amount entrained depends upon both the roll

speed and the fluid properties (Campanella, 1984). For a given

fluid, the roll speed is limited on the low end by this flooding

"criterion. On the high end, there is also a limit, corresponding

to the onset of instabilities and/or air entrainment , Under

Y• unstable wiping conditions, the residual fluid layer is no longer

"smooth and often develops a "ribbed" pattern (Pearson, 1960,

Sullivan, 1979) transverse to the direction of flow. Positive

blade placements and negative blade angles are found to promote

this instability. When stability is not a problem, there is a

limit on roll speed above which air is entrained into the test

fluid at the interface where the roll surface re-enters the bath

(Burley, 1984). The range of roll speeds investigated is from 2

to 20 in/sec, depending on the test fluid. To obtain flooding of

the blade, a lower limit on the viscosity of newtonian test

fluids is about 3 poise.

Two newtonian liquids are examined: glycerine and Karo
S

syrup. Under conditions that the blade inlet is flooded, no

effect of linear roll speed on residual fluid thickness is

observed. Figure 20 shows data for glycerine and Karo syrup with

a 1/4 in. blade at 0 degrees and the corresponding results

,.. .27
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predicted by lubrication theory. Results for glycerine and Karoh syrup are identical (within experimental uncertainty) even though

their viscosities differ by almost an order of magnitude. In

other geometries, similar agreement between the two is found.

The remainder of the newtonian results presented are for

glycerine, with the assumption that they are representative of

newtonian liquids in general.

In Figure 20, agreement between the data and lubrication

theory is good for small blade heights , but becomes poor as H,

increases, while in Figure 21, the data and theory are in good

Agreement up to the maximum blade height shown (50 mils). The

poor agreement with small blades at large blade heights is due to

entrance effects not accounted for by lubrication theory. When H

" 50 mils, L/H - 10 for the 1/2 in. blade, but only 5 for the 1/4

in. blade. Data indicate that L/H > 10 is a reasonable estimate

of the requirement that entrance effects are negligible. Notice

that when entrance effects are significant, data lie above the

theory as expected on the basis of momentum transfer arguments

(Appendix A). Blades larger than 1/2 in. are not used for two

reasons. With the 1/2 in. blade and 2.75 in. radius roll, L/R *

0.18. Larger blades would likely invalidate the negligible

curvature assumption, L/R << 1, and at the same time require a

large amount of fluid to flood the inlet region of the blade.

* This flooding problem (see Figure 2a), limits the blade geometry

in a number of cases.

4 14., Changing the blade angle from zero to 10 degrees affects the

*m residual fluid thickness as shown in Figures 22, 23, and 24, for

three blade lengths. Surprisingly good agreement between
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experimental data and simple lubrication theory is found for the

1/2 in. blade. Note that as the blade size decreases, the data

fall further above lubrication theory predictions due to entrance

"effects. Blade angles larger than 10 degrees are not discussed

because of large curvature effects and the problem of flooding

the inlet region of the blade. Some experiments performed with

large blade angles (e.g. 45 degrees) produced data that fell

below lubrication theory predictions, but it is unknown whether

this effect was due to curvature or an inadequately flooded inlet

"region.

Figures 25 and 26 show the effect of blade displacement and

are also good examples of the above mentioned flooding problem.

Once again, data for the largest blade (L-1/2 in) are in good

agreement with theory, but only for three of the four

displacements shown. The data for the largest negative

displacement (X2--0.5) fall below the theory. This is a prime

* example of not enough fluid being entrained by the roll to flood

the inlet region of the blade. The problem is exacerbated when

the blade angle is increased, as shown in Figure 26.

Non-Newtonian Liquids:

Predicting the behavior of viscoelastic liquids is difficult

in even the simplest flow problems and is complicated further by

the converging-diverging nature of the wipinq process. We do not

"expect good quantitative agreement between the simple power law

"29
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lubrication theory model and residual fluid thickness data for

real viscoelastic fluids, but rather hope to gain insight into

the effect the shear dependent viscosity has on the results.

Figure 27 shows viscometric data, taken with a Rheometrics

Fluids Rheometer, for a shear thinning carboxymethylcellulose

. (CMC) solution. For a linear roll speed of 10 in/sec and blade

heights ranging from 10 to 50 mils, the nominal shear rate ranges

from 200 to 1000 1/sec. In this range the power law index, n, is

about 0.6. Note, however, that the fluid also exhibits a finite

normal stress. At a representative shear rate of 500 i/sec, the

recoverable shear, S , defined by

where

and

p is also about 0.6. The recoverable shear is a parameter commonly

used to estimate the relative importance of elastic and viscous

effects. When we examine data for the CMC solution, we observe

the results of both shear thinning and elastic effects, while the

power law lubrication theory only accounts for the shear thinning

behavior. L

Figure 28 shows that the residual fluid thickness of the CMC

solution is considerably greater than that for glycerine and is

also greater than predicted by lubrication theory. Since shear

thinning behavior is accounted for in the model, it is reasonable
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to suspect that the increase in thickness is due to elastic

effects. To test this hypothesis, small amounts of high

molecular weight polyacrylamide (PAM) are added to the CMC

solution, to increase the recoverable shear without significantly A

2. affecting the power law index. Data for two such solutions are

included in Figure 28, one with a recoverable shear of 0.9 and

the other with 1.4. Note that by increasing the recoverable

shear, the residual fluid thickness decreases rather than

increases. The data for the solution with the largest recoverable

shear fall below those of the newtonian fluid. This is opposite

to the effect predicted by the power law lubrication theory

model.

In an attempt to isolate elastic and shear thinning effects,

the behavior of an elastic fluid with insignificant shear

thinning (i.e., a Boger fluid - Boger, 1977) is examined. The
fluid is made by adding a small amount of high molecular weight

PAM to corn syrup. Figures 29 and 30 show viscometric data for

the Boger fluid as well as for a CMC solution and glycerine.

Note that the viscosity of the Boger fluid is nearly constant

over the shear rate range for which data were collected. The

Boger Fluid also exhibits large normal stresses in steady shear

relative to the highly shear thinning (n-0.6) CMC solution.

Figure 31 shows a drastic decrease in residual fluid

thickness with the Boger fluid relative to glycerine. Note that

although the CMC data fall above the power law lubrication theory

curve, it is in better agreement for the larger 1/2 in. blade

than for either the 1/4 in. blade (Figure 32) or the 0.068 in.

blade (Figure 33). This is attributed to entrance effects, which
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for flow in pipes are known to be considerably .'mnger for "K

viscoelastic fluids than those encountered with newtonian fluids

(Tung, 1978). Results in Figures 31-33 demonstrate that the

elastic solution exhibits a greatly decreased residual fluid

thickness in comparison to lubrication theory models. The amount

of viscoelastic fluid left behind after the wiping process

appears to depend on the competing effects of shear thinning,

causing it to increase, and elasticity, causing it to decrease.

.. _
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CONLUSIO

Experimental results for newtonian liquids are very useful

for determining the range of validity of the lubrication theory

model, but unfortunately, that range is severely limited. One

obvious inadequacy of the model is the negligible curvature

assumption, which is only valid for very small wiper angles.

Another is the assumption of negligible entrance effects, which

appears to be violated for thin wipers. The model also fails to

take into account surface tension effects by using the Swift-

"Steiber boundary conditions. A useful estimate of the magnitude

of surface tension effects is the dimensionless capillary number

defined by

The fact that N is of order unity in some of our experiments

indicates that surface tension may be significant. Gravitational

effects are neglected in the model as well, and can be estimated

by another dimensionless group, the Stokes parameter, defined by

Sk~ ~(37)

If the blade height is large and the roll speed is low, St can

be as large as 0.2, but in most of our experiments gravitational

effects are negligible. (Note: Centrifugal effects are always
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negligible). Obviously, a less restrictive model of the wiping

process is required, but since an analytical solution is very

unlikely, it is necessary to consider the use of numerical
S~~techniques. 'i

We are presently attempting to use the Finite Element Method

(FEM) to solve the blade wiping problem for newtonian fluids
without the simplifying assumptions mentioned above. Surface

tension, which is neglected bý the use of the Swift-Steiber

boundary conditions in the lubrication theory model, can be

accounted for by treating the region downstream of the blade as

a free surface problem. The effects of gravity, inertia, and

curvature are relatively easy to incorporate into the numerical

scheme as well, so that the rigid blade wiping problem can be

completely solved for newtonian liquids.

Even with sophisticated numerical techniques, it is unlikely

that the wiping problem can be solved in general for viscoelastic

liquids. With newtonian liquids, the formulation of the problem

is straightforward because of the simple and predictable manner

in which they respond to imposed deformations. Viscoelastic

liquids, on the other hand, exhibit extremely complex behavior

which is dependent on both the magnitude and duration of

deformation imposed. Unlike the newtonian case, a constitutive

equation does not exist that is capable of describing visco-

elastic fluid behavior in a general flow field. Nonlinear

viscous behavior alone, is relatively easy to model, the power

law fluid being a simple example. The difficulties arise because

the viscous effects are coupled with transient and deformation

history dependent behavior associated with the "elasticity" of

34
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the fluid. Today, flow problems are solved using constitutive

equations chosen according to a compromise between algabraic

tractability and physical reality. Such equations are highly

dependent on the nature of the flow field and are limited to

* special classes of problems. The wiping problem is a formidible

problem for a constitutive equation to model because fluid

particles experience rapidly changing deformations in time, which

can be of considerable importance for viscoelastic fluids

(Shirodkar, 1982). Elastic liquids can exhibit large transient

shear stresses as well as extensional stresses when undergoing

the rapid changes in deformation rate that are present because of

the converging nature of the flow. The reulting kinematics for

viscoelastic liquids are often drastically different from those

present for newtonian liquids (Doremus, 1983, Mensah, 1984,

Metzner, (1969).

Key to solving the problem of modeling viscoelastic fluid

behavior is determing which material properties are most

responsible for the behavior of a given fluid in a particular

flow field. We have mentioned the recoverable shear, which is a

steady viscometric material property providing a measure of the

relative importance of elastic and viscous effects in steady

shear flow. An important question is, can material properties

measured in steady viscometric flows provide insight into how an

elastic liquid will behave in a transient flow field? If not,

what are the pertinent transient fluid properties to measure and

how can they be incorporated into useable and realistic

constitutive equations?
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Given the difficulty involved in choosing an appropriate

constitutive equation to model the wiping process, it is

fortunate that we are able to use experimental data to evaluate

proposed constitutive equations. Finding a constitutive equation

to best fit the data is equivalent to determining which material
properties of the fluid dominate the flow field. As a simple

example, if the power-law model had fit the data nicely, we would

conclude that the shear thinning nature of the fluid is most

responsible for the resulting behavior. In fact, such is the case

for the CMC solution with the lowest recoverable shear. There is

an increase in X over newtonian values as predicted by the model,

although a little more dramatic than expected. However, as the

elasticity of the fluid is increased by the addition of poly-

acrylamide, as reflected in an increased recoverable shear, the

trend in X is reversed. The shear dependent viscosity is

obscured by another fluid property associated with the elasticity

of the fluid. The data provide experimental evidence of this

fact, and is a good test for evaluating constitutive equations to

be used to model the process. In this way we can obtain a better

understanding of the important features of the wiping process.

This study provides a good foundation for understanding the

rigid blade wiping process, but equally important, it provides

some insight into a direction for future work. A Finite Element

solution to the newtonian problem is required to understand the

effects of inertia and surface tension and explore thin wipers

and large wiper angle geometries. With the newtonian problem

well understood, experimental data for well characterized visco-

elastic fluids can be compared to newtonian results and provide
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information regarding more quantitative aspects of non-newtonian
S~and elastic effects. An obvious extension of the rigid blade

wiping problem is to the study of wiping with flexible blades.

This problem is much more complicated than the rigid wiper case

because the geometry is unknown a-priori and depends upon the

complex interaction of hydrodynamic forces and wiper properties

(Saita, 1984). Fortunately, the solution to the rigid wiper

problem provides the logical first step in understanding the
,.-':"',influence of geometry on tlhe hydrodynamic forces that develop

under a wiper and is a valuable tool for further study.

37.
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F/W - force per unit width on blade

h - residual fluid thickness

h - characteristic length in the y-direction

H - blade height at x-0

HO - minimum clearance between the blade and the roll

K - parameter in power-law fluid model

L - blade length

Le - entrance length (Appendix A)

L*A - characteristic length in x-direction

n - power-law index

Nl - primary normal stress coefficient (page 30)I P - pressure

Q -flow rate

R - roll radius

Re - Reynolds number (page 5)

U - linear roll speed

u - velocity in x-direction

u(x) - u-velocity on roll surface

v - velocity in y-direction

v(x) - v-velocity on roll surface

x - space coordinate in the primary flow direction
X0 - x-coordinate at the point of minimum blade clearance

X1 - x-coordinate at the upstream edge of the blade

X2 - x-coordinate at the downstream edge of blade

y - space coordinate transverse to primary flow direction
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Variables:(page 2)

S- geometric parameter (page 5)

- function describing the blade surface (linear)

e() " -dimensionless blade surface

W(x) - boundary layer thickness (Appendix A)

- rate of deformation tensor

2 - dimensionless space coordinate - y/h (page 4)
- dimensionless residual fluid thickness - h/h (page 6)

- viscosity

S- dimensionless space coordinate - x/L, (page 4)

IT - dimensionless pressure (page 4)

A - second invariant of A

e - density
cr(x) - function describing the roll surface (quadratic)I () - dimensionless roll surface

0y - surface tension

r - stress tensor

- i,j component of the stress tensor

- dimensionless u-velocity (page 4)

- dimensionless u(x) (page 11)

- dimensionless blade loading (page 13)

- dimensionless v-velocity (page 4)

YOM - dimensionless v(x) (page 11)

- blade angle
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An9Ia (do9)

or-
Symbol HolR Diapl acgmont (mm)

o0.006 0

• 0.015 0

So0.025 0

A 0.006 + 1

A 0.015 + I

. 0.025 + 1

0,I- 0.006 -1

3 ~~0.015 - ,

4' 0.025 -1

TABLE I: Key to FISures 10-17

BladQ Lmenith (L) Blade Angle (W)

0.5 In. 0 dog.
10 de 9 .

0.25 in. 0 dQ9.
10 deg.

0.068 in. 0 deg.
10 dog.

,* I A,

TABLE 2: Blode Caometries
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, It

Blade

S~FIGURE 1: Configuration of a simple

.j B I lade-Over-R l W i Wtper

x-X1 x-X2

9 o- ow

FIGURE 2: Oginition skrtch oif tha GeomQtry
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J0

-- I

Figure 2as Schematic showing on example
of the "FLOODING PROBLEMO. The
Inlet region of the blade is
not supplied with an adequate
amount of fluid from the both.
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0.7

Effact of Blad Angle

R-51 mm

-W RX2'0 mm

0.

0. 84

V 0.0 03.2

H/R

FIGURE 31 Effect of blade angle on Residual •
Fluid Thickness C A ). Solid lilnes

Sare Lubrication Theory for a Newtonian

liquid. Symbol* are from Hlu (1984)•,-. ~0 - Zeroth order solution ''

- First order curvature included
S. - Finite Element Solutionr

43



K L.N.

x~m

0.7

0.8 

do

H/R 

.0

FIGURE a Effect Of blad rge OM9Q mRQu4dual

or-v Lubrlcctiom 
Theory for a Nowtom,.
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°*°I
0. 7[Effect 

of Blade !)leplacomQnt
L-19 mm

R-51 mm

a.es0 dog angle

0. 66

X2--1 mm

0. e4

0.642

S0. 0 i0.02 0.013
• ';•H/R

~A

FIGURE 4: Effect of blade displacement on Residual
Fluid Thickness . A ). Solid lines
are Lur-icotion Theory for a Newtonian
liquid. Symbols are from Hsu (1984).

0 - Zeroth order solution
*- Fir-st order curvature included

- Finite Element Solution
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I. .,If

M, rv. vv .. .. ...... . W ,v q - RAM-41W

'I+'

P . Effect of Blade Angle

:%L-1 mm 
'

R-51 mm

1.4± X2-0mm

-2 dog

N -Id

1.22 do do

. m01 0.02 .03

"mLI• 'H/R

I .9

FIGURE 51 Effect of blade angle an Blade Loading.

Solid lines are Lubrication Theory
for a Newtonian liquid. Symbols are
from Hsu (191e4).

S-Zeroth order solution
S-First order curvature included

All. Finite Element Solution
.4<946
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Effact of Blade Oisplacamornt

,%,,

I-S mm
0 dog angle

.¢'4.

1.4j

1.2

X2a0 X~uImu

X2- 2u. - ,

" ". 1.0

0. 8

001 O0.02 0.03

FIGURE 6s Effect of blade displacement on Blade
Loading. Solid lines ore Lubrication
Theory for a Newtonian liquid.
Symbols are from Hsu (1964).
3 - Zeroth order solution

' - First order curvature included
Z - Finite Elemant Solution
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EffECT of BaeLnt

Rin51 mm

X2-0 mm

0.68 0 dog angle

0.84

Lao14 min
0.01 0.02 0.03

FIGURE 7s Efetoolaelnt n Residual
aeLubrication Theory for a Niewtonionliquid. Symbols area from Hsu (19134).0-Znu-oth order solution
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Effect of Blade Length

R-51 mm
X2-0 C.o

0 aog angle

1. 4

L-29 mm

1.0 I
L-12 mm

0.01 0.02 0.,03

H/R

FIGURE 8, Effect of blade length on Blade Loading
Solid lines are Lubrication Theory
for a Newtonian liquid.

49

_I,



* 1.0

PRESSURE DISTRIBUTION

L'19 mm

R-51 mm

0.8 X2-0 mm
0 dog angle

• Ho-Oo 03 mma

0.M

0 - Newtonian

- Power Law (n-1)

a
0.4-

0.2aa

Position Along Slade

SS

FIGURE gas Comparison of the Pressure Distribution
under the blade obtained with the numerical

Power-law Lubrication Theory algorithm
(n-1) to the analytical Newtonian
Lubrication Theory solution.
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4.6

0.63

0. 62

0.01 0.02 0..03

H/R

FIGURE 9bi Comparison of the Residual Fluid
Thickness obtained with the numerical

* Power-low Lubrication Theory algorithm
(n-1) to the analytical Newtonian
Lubrication Theory solution.
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0.80

L~gmm

X2-0O MM

0.7 H/R -0. 005

0.72
0

I do

0.58 0

0 0 dog

0.84

0.4 0.65 0.6 1.0

Power Low Index Cn)

A

FIGURE 10i Effect of power-low index on Residual
Fluid Thickness with blade angle as a

parameters. CKey in Table 1I
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080 LWIGmm

X2-0O mm

0.75 H/R *0.015

NIAA

0.72.

0.665A 1 d8

0.84.. 0 adeg

*-1 dog

0.60.

0.4 0.5a 0.8 1.0
Power Low Index (n)

FIGURE 11i Effect of power-low index an Residual
Fluid Thickness with blade angle u~s a
parameter. CKey in Table 1I
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L-19 mm
* I. R"51 mm

X2-0 mm

* 0.78
H/R 0. 025

0.72

•..5

•I dog

0.64
0 d

0 4 I deg

0• . 60 ci -1 d: ug

0.4 0.6 0.8 1.0

Power Low Index (n)

FIGURE 121 Effect of Power-law index on ResLdual
Fluid Thicknoeu with blade angle as a
parameter. (Key in Toble 1 )
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'Q Q

0 0

1.5 O H/R , 0.00e

,o H/R 0. 0 15

_�__��_�___ _ "H/R - 0.025

O .~~~~~ .......... ........ ::

0.4 0.6 0.a 1.0

Power Law Index (n)

-0'1O

FIGURE 13t Effect of Power-law index on Blade Loading
with blade angle and blade height as
parameters. ( Key in Table 1 )
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-- 0. 80 ,

L-19 mm
,, R-51 mm

0 dog angle

H/R - 0.006
0.76 0

/.1.

0.20X2--1 mm

0

0. 88 0

0X2-0mm:! 0.84 A m

'0,04

,X2-1 mm

0.4 a.a 0.8 1.0
Power Law Index (n)

FIGURE 14s Effect of Power-low index on Residual
Fluid Thlckness with blade displacement
am a parameter, ( Key in Table I )
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0.80

lmm

R-51 mm

0.78 H/R 4O0.015

-. * 'N0. 72

-'• Power Low Index (n)

,,•.•FIGURE 15s Effect of Power-low index on Reuidual
;•:•,>,:Fluid Thickneas witch blade displacement

0.n a parmtmr. mKey in Table I

-.. ".e.57



a. 80

L-19 mm

R-51 mm

0 dog anqla

a. 7 H/R 0 0. 025

0.72

C1

0.134 S)X2-0 mm

ciX2aO mm

&A

0.60 A X:; mm
0.4 0.6 0.8 1.0 4,

Power Low Index (n)

FIGURE 181 Effect of Power--law Index on Roeiduol
Fluid Thickness with blade displacement
as a parometer. C Kay In Table I )
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.2.0A

,0,0

. 1 C3 0 H/R 0. 005

1.5

*-- H/R 0. 015

4 ~H/R *0.025

0. 5

0.4 0.5 0.8 1.0

Power Low Index (n)

FIGURE 171 Effect of Power-law index on Slade Loading
with blade displaocement and blade heisht
as parameters. ( Key in Table 1 )
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FIGURE 191 Blade Geometry - Length (L)
arnd An9gle Cw ) are adjustable.

aNotes L Ic the land lengthJ
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40

R-2. 75 in

L-0. 25 in

X2-0
0 dog angle

3x

20O

xG

Solid lime *Lubrication Theory

V, - Glycerine

x -Karo Syrup

0 10 20 30 40 50
Ho (1/1000 in)

FIGURE 20t Residuoa Fluid Thickness vs. Blade Height
for Glycerin (oW and Koro Syrup Cx)
compored to Lubrication Theory (linQ)
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_• 40

""40"Effect of Blade Length

R-2.75 in

X2-0

0 dog angle

30 LO 0i

00'=0 5 In

L--0.25 in

~20

10 Soi ia uriaimTer

L-.2 In

10 20 3o 40 50

He C1/1000 in)

showing the effect of blade length.
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40

Effect of Slade Angle
10 dug :

R-2.75 
in

L-0.50 in

X2-0

so

0 deg

S20

Solid lines - Lubrication Theory

10 Ucto for Glycerine

- Odeg angle

S- 10 dog angle

0 10 20 30 40 50

Ho (1/1000 in)

FIGURE 221 Newtonian data and Lubrication Theory
showin9 the effect of blade angle
uati9 a 1/2 in. blade.
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40

EffQct of Blade Angle

"R-2.75 in

X2-0

L-0.25 in 10 dog

30

•°" o 0 doag

a

0

820

10 a Solid linea - Lubrication Theory

Cato for Glycerine

a - 0 deg

" ÷ -10 dog

0 10 20 30 40 50

Ho (1/1000 in)

FIGURE 23: Newtonian data and Lubrtication Theory
showing the effect of blade angle
using a 1/4 in. blade.
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40

44" Effact of Blode Angle,

"R -2.75 in
X2-0

L-O. 068 in

:30 +

-C .4

820

SSolid limes =Lubrication Theory

• oa - 0 dog amgle

I•" * - 10 dog angle

0

In, :: - . I-, , .... .-'

I 2

• t 1 20 30 40 50 ,

':" Ho (1/1000 in)•

FIGURE 24z NewtoniSn data and Lubrication Th eory

showing the effect of bl0du angle

using a 0.0618 in. blade,.i

bA ."k,•

* 1 ogagl
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40

Effect of 8lade Claplocamant (X2)

R-2.75 inX.-O5I

L-0.5 in

0 dog angle X2--0. 25 in

x

30
x X2-0 in

'A'.x X2-0.25 in

10 Data for Gly#cerine

aufl 1/2 20. blod 4t0 0er
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40 X2--O.5 In

-' Effect of Blade Oleplacement (X2) X2--O. 25 in

R-2.75 in X2-0 In

L-0.5 in

10 dog angle X2-0.25 in

x

3o x X2-0. 5 in

N v

§20
"""4

\.p

' /Solid limne s Lubrication Theory

Data f•r Glycerine

o - X2-O in
+ - X2-0.25 in

v - X2-OS in
* - X2-0.25 In

x - X2--0.5 in

0 L , ..

0 10 20 30 40 50

Ho (1/1000 in)

FIGURE 26: Newtonian data and Lubrication Theory

showing the effect of blade displacmQMnt

using a 1/2 in. blade at 10 degrees.
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x1 U

1.25% CMC

_a - viscovity

x NI

x

103

x

-I0

0 02 100

-',Shear- Rate (1/eec)
0 12

FIGURE 27t Viscosity and Normal Stress vs. Shear
Rate for 1.25% CMC solution.
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40

Effect of Shear-thinning and Elastic Behavior

R-2.75 in
L-0.25 In

X2-0
10 deg angle+

30

a ! lyaime! ord A

+ - 1.23Z CI4C

Loer 1.w2n5a IM n .5 A

20 +
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Shear Thinning vs Elastic EFPects
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Shear Thinning vs Elastic Effects
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A

S~APPENDIX

MOMENTUM TRANSFER ARGUMENTS FOR AN INCREASE IN RESIDUAL FLUID
THICKNESS WITH DECREASING BLADE LENGTH.

For the purpose of simplifying the present discussion, we

consider the simplified geometry with zero curvature (R-oo ) and

zero wiper blade angle shown in Figure A-I. Similar arguments

apply to more complicated geometries.

Fluid entrained by the moving roll in our experimental

apparatus approaches the wiper at a constant speed, equal to the

roll speed. However,, because of the no-slip condition at solid

surfaces, the velocity of fluid making contact with the leading

edge of the wiper becomes zero, which initiates the formation of

a boundary layer as shown in Figure A-2. The thickness of the

j boundary layer , J(x), is the distance over which viscous shear

stresses, originating at the wiper surface, transfer momentum

between the wiper and the fluid. Fluid outside of the boundary

* layer remains unaffected by the presence of the wiper. The

boundary layer grows along the wiper, downsteam of the leading

edge, and if the wiper is long enough, eventually fills the

region between the wiper and the moving surface. For two

4 parallel surfaces , one moving and the other stationary, the

velocity profile is linear when it becomes "fully developed", and

the distance required for this to occur is called the "entrance

length (L )". Simple lubrication theory assumes that the
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entrance length is zero and therefore, cannot account for

"entrance effects", should they occur due to the developing

boundary layer. For large wipers, when L/L >> 1, entrance

effects are negligible, but as the wiper length decreases, the

entrance region can become a significant fraction of the wiper

length. We would like to have some estimate of how small a wiper

must be in order for entrance effects to be significant and how

these effects can influence the residual fluid thickness.

In an attempt to investigate entrance effects we consider

the simple geometry shown in Figue A-1. From boundary layer

theory (Bird, 1960 - pg.145) we know that the thickness of a

boundary layer developing on the wiper can be approximated by

&(J -~ I, (A-1)

with the velocity distribution

M~ (A-2)

Assuming, that outside of the boundary layer fluid moves with the

same velocity as the moving surface (u-U), the flow rate, Q,

* .between the wiper and the moving surface can be written

- where '(x) < H . If the boundary layer thickness in the above

expression is evaluated at the downstream edge of the wiper (i.e.
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x=L), then the residual fluid thickness is given by

- (A-4)

Using the following dimensionless variables and substituting

_U~4 0  0 i

Equations A-i and A-4 into A-3, we obtain an expression for the

residual fluid thickness, which is only valid as long as the

boundary layer does not extend to the moving surface (i.e.

(L) HO).

L)'
(A-5)

The assumption that S (L) < H constrains the blade length to

U - ~(A-6)

The actual wiper lengths for which entrance effects are

significant is actually larger than this, because once the

boundary layer reaches the moving surface, there is an additional

transition region along which the velocity transforms into its

fully developed linear profile.

Figure A-3 shows the effect of blade length, at a given

Reynolds number, on the residual fluid thickness as predicted by
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V, Equation A-5. According to the boundary layer arguments, the

residual fluid thickness increases as the blade length decreases,

when entrance effects are significant. The dotted line is an

extension of Equation A-5 into the transition region of blade

length, where boundary layer arguments are certainly invalid.

Although we can not easily estimate the length of the transition

region, it is obvious that simple momentum transfer arguments

suggest that the residual fluid thickness increases when entrance

effects are significant.
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> .... ......c

Figure A-i: Simple wiper geometry with zero
curvature and zero wiper angle.

.4.

h, w

Figure A-2: Developing boundary layer at
the leading edge of a wiper.
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Figure A-3z OependencQ of r-siduol fluid
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entrance effects due to developing
boundary layer are significant.
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